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Seven -Point Difference Schemes 
for Hyperbolic Equations 

By Avishai Livne 

Abstract. A necessary and sufficient condition is given for all hyperbolic difference 

schemes that use up to nine mesh points to be of second-order accuracy. We also 

construct a new difference scheme for two-dimensional hyperbolic systems of conserva- 

tion laws. The scheme is of second-order accuracy and requires knowledge of only 

seven mesh points. A stability condition is obtained and is utilized in numerical com- 

putations. 

1. Introduction.* The numerical solution of initial boundary value problems for 
nonlinear systems, such as the ones describing the time-dependent equations of fluid 
mechanics, can cause computational problems. These include large computer memory 
requirements and large running time. These difficulties are even more prominent as the 
number of space dimensions increases. The purpose of this paper is to introduce a new 
difference method for solving the initial-value problem for first-order symmetric hyper- 
bolic systems of partial differential equations in two space variables. Our scheme re- 
quires a knowledge of only seven points. This is shown to be the best possible result 
without sacrificing stability. Six is the minimal number of points necessary for a 
scheme to be of second-order accuracy. It is easily seen that all six-point schemes are 
unconditionally unstable. Schemes of second-order accuracy for the same problem 
used by Lax-Wendroff [5], Strang [8] and others [4], [2], [1] are based on nine 
points. In computational trials, this seven-point scheme was twice as fast and twice as 
accurate as the Lax-Wendroff scheme. 

In Section 2, we find a necessary condition for a nine-point scheme to be of 
second-order accuracy. Then, with the aid of this condition, we construct a second- 
order accurate difference scheme which involves only seven neighboring points. The 
proof of stability for this scheme, given in Section 3, is based on the stability criterion 
of Lax-Wendroff [5], and Kreiss [3]. In Section 4, we extend the difference method 
to systems of conservation laws, and, in Section 5, we give a numerical result comparing 
our scheme with other ones. 
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A second-order accurate scheme which requires less than nine points, namely 
seven, has previously been given by MacCormack [6]. However, his method involves a 
very unusual stability condition, namely At = o(LX413). In contrast, our seven-point 
scheme is stable in the usual sense. Our method of derivation of the difference scheme 
extends to more than two space dimensions. 

2. Nine-Point Schemes. The class of equations under consideration is of the 
form 

(2.1) ut =Aux +Buy, 

u is an n-dimensional vector function of x, y and t; A, B are n x n symmetric matrices 
which may depend on x and y. For the sake of convenience, we shall not consider 
explicit dependence on t. On occasion, we shall abbreviate the right-hand side of (2.1) 
by G and write the equation in the form 

(2.2) ut = Gu, 

indicating explicitly only the dependence of u on t. We are interested in the initial- 
value problem, i.e., the problem of finding a solution of (2.1), given the value u(O). 

We shall consider difference approximations to (2.1) of the form 

(2.3) v(t + h) = Lhv(t); 

where v denotes an approximation to u, h is the time increment and Lh is a difference 
operator, i.e., 

(2.4) Lh cijTl2 
i,j=-l 

.~ ~ ~ ~ ~ ~ Q . 

where T11u(t, x, y) u(t, x + i,uh, y + jvh) -uij, ,I and v are constants independent 
of h, and ci are matrices depending on x and y. We shall call such Lh a nine-point 
operator if all cij are nonzero. 

The scheme (2.3) is of second-order accuracy for (2.1) if 

(2.5) u(t + h) = Lhu(t) + 0(h3) 

for all sufficiently smooth solutions u(t) of (2.1). 
We shall use 11- 11 to denote the L2 norm. 
Definition. If 9 - k of the cii in (2.4) vanish identically, then Lh is said to be a 

k-point difference operator. 
Thus, the Lax-Wendroff [5], and the Strang schemes [8] are nine-point operators; 

the MacCormack scheme [6] is a seven-point operator. 
A necessary and sufficient condition for the nine-point operator (2.4) to be of 

second-order accuracy for (2.1) is given in Theorem 1 below. 
Let 
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-I -I -I 0 0 0 I I I 

H= -I 0 I -I 0 I -I 0 I 
(2.6) I I I O O O I I I 

2I 0 -2I 0 0 0 -2I 0 2I 

I O I I O I I O Ii 

ct = (c1 _1'C10 c- 1 1' co,1, co,o Col, cl1, c10,0 cl,l), 

Rt = (I, A/I, B/v. A2/,92, B2/v2, (AB + BA)/,u), 

where I is the identity n x n, matrix. 
THEOREM 1. The nine-point difference scheme (2.4) is of second-order accuracy 

for (2.1) if and only if the coefficients ci1 satisfy 

(2.7) Hc = R. 

Proof We may assume that A and B are constant matrices. We take ,u = v = 1. 
Let u(t) be a smooth solution of (2.1); substituting 

ut = Aux + buy and utt = A2uXx + (AB + BA)uxy + B2uyy 

in 

(2.8) u(t + h) = u(t) + hut + ?12h2utt + 0(h3) 

we get 

(2.9) u(t + h) = u + h[Aux + Buy] + 1/2h2 [A2UXX + (AB + BA)uxy + B2uYY] 
+ 0(h3). 

Expanding (2.4) up to second order in h we obtain 
1 1 

Lhu = cjTju = ciju(t, x + ih, y + jh) 
i,j=-1 i,j=-1 

- __cij [u + ihux + jhuy + %h2(i2Ux + 2iux y + j2uyy)] + 0(h3) 

(2.10)- 
= u + h UX ici + uy 2 ic] 

+ h 
u i2cf + 2u y , ijCi + uyy j2cj + 0(h3). 

i,j=- 1 i,j=Q=- Q= ,=- j 

Comparing (2.9) with (2.10), we see that (2.5) is satisfied if and only if (2.7) holds. In- 

deed, taking the following smooth solutions of (2.1), (i) u = const, (ii) u = exp [At + Ix] p, 
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we see that (2.7) holds. Similar computation gives (2.7) for all values of , and v. 
The rank of H is 6 if n = 1, otherwise it is 6n, therefore all six-point difference 

operators with second-order accuracy for (2.1) are completely determined by (2.7). 
Thus we obtain 

THEOREM 2. There exist six-point difference operators with second-order accur- 

acy for (2.1). 
Thus for instance 

Lh = I + 1/2A(Tl1 - T- 1 0) + 1/2B(TO -_TO?-) 

(2.11) +1/2A2(TlO - 2I + T-10) + 112B2(TO' - 2I + TO-') 

+ 112(AB + BA)(I- T 0)(I- T01), 

is a six-point difference operator of second-order accuracy. 
Unfortunately, all such six-point difference operators are easily verified to be 

unconditionally unstable. Similar considerations show that there are seven-point differ- 
ence operators of second-order accuracy for (2.1). Thus, taking c_ 1 1 = cl -1 = 0, 
we get one of the two possible difference operators. The other possibility is the mirror 
reflection of the one above. 

Lhu = [I - A2/,92 - B2/v2 + (1/2)(AB + BA)/Iv]u11 

+ [- A/2,u + A2/2pA2 - (1/4)(AB + BA)/,AP - A]ui1 

+ [(1/4)(AB + BA)/,AP + A]ui_ ,j_ 

(2.12) + [B/2v + B2/2v2 - (1/4)(AB + BA)/,v + A]ujj+1 

+ [- B/2v + B2/2v2 - (1/4)(AB + BA)/,v - A]u_ 1 

+ [(1/4)(AB + BA)/uv - A]ui+1,+1 

+ [A/2,u + A2/2/A2 - (1/4)(AB + BA) + A]ui+1,j 

where A is an arbitrary n x n matrix. The seven-point scheme of MacCormack is 
obtained by setting A = 0 in (2.12). It is easily seen that in this case Lh is uncondi- 
tionally unstable. We shall show that for A = -(A/lu + B/v)/4 the operator (2.12) is 
stable. Substitution of this A into (2.12) gives 

L+u = ui1 + (A/41A)[ui+ 1,j - Uil,j + ui+l,1+l - u11+ + u,j- 1 - Ui- 1,1-1] 

? (B/4P)[ui1+ 1 - Uij, + ui+1,j+ - Ui+ 1,j + Ui-,j Ui- 1,j-1] 

(2.13) + (A2/2p2)[u +1 - 2ui+ ui-j] 

+ (B2/2v2)[ui j+ 1 - 2ui,j + U1j 1 ] 

? [(AB + BA)14pcw][ui+ 1,j+ 1 - ui+ij + uij 

-u +u 1,j_ -us_l + uij uij+ 1 
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Setting 

M =(Tl/2T ? T1/2 ? Tl/2 + T-1/2T1 )/4 y x12 y X X x y 

All 1(T2TX + T- 1/2 + T +/2 ? T- 1/2 Tx- 14 X ~~y + 
TY 1y I 

N = ?h (T- 1/2T;- 1/2 + 71 t7$), and Dx - /' - T-1/2, where Txtu = u(t, x + aph, y), 
Tau = u(t, x, y + aoVh). We can abbreviate (2.13) by 

(2.14) L+u [I + ADXM ? + BDYMX+ + A D2 + B D2 + AB + BA D u] 
LXYYX 

x 
2X 

y 
?B2 DD u 

The case c1 c 0 corresponds, in a similar manner, to the operator 

?-2 B2 (AB +BA) 
(2.15)Lu LI + ADxMY + BDYMX+ A2 D 2 + DD N ju 

where 

= (TyT1/2 + Tj-/2 + Tl/2 T-2 

= (TxTj l/2 ? T37? ?/2 +1/" + T-T>4 

M- (T7 Tl/2T + /2T /2)/2. 

3. Stability for Seven-Point Operators. In this section, we give a stability criter- 

ion for (2.14) ((2.15)). We prove that II(L+)kl 6I const for all positive integers k and 

positive numbers h such that kh S 1. Let C--C(t, 71) be the amplification matrix for 

L+; then L+ is stable (Lax-Wendroff [5, Theorem 3] ) if l(Cu, u)I S 1 for all ItI S vi 

and u E Rn, Iu I = 1. Here ( , ) and 1I denote the Euclidean scalar product and norm 

in Rn, respectively. 

THEOREM 3. The operator L+ is stable if 

(3.1) IIA/,u - B/vN2 + IIA/,u + B/v2 12 T 1 and IA/u - B/v122 ? 1/4. 

Here 

IITII = sup ITul forany matrix T. 
IuI?1 

Proof We assume as above that A and B are constant matrices and ,u = vg = 1. 

Using Fourier transforms, we find from (2.14) that 

C = I - A2(1 - cos H ) -aB2(1 - cos t) 

(3.2) A A T - cos t)(1 - cos s l- sin f sin 

+ L [A(sin(I + IA) + sin B - sin an) + B(sin(I + ) - sin B + sin 1)]. 

Here~~ 
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Setting D = A - B, E = A + B and M = E sin (Q + rq)/2 + D sin (Q - r)/2, we write 
(3.2) in the form 

(3.3) G = I- (D2/2)(1 - s c )(- 7) - cos 2 /M 

For any vector u E R' such that luI = 1, we set 

(3.4) PuI = d, lEuI = e, IMul = m, I - cos =a, I - cos 7r = b. 

We have to show 

lUC, U - 2 2 + 
+ m2 

2 
(MU, U)2 < 1. 

Now, since l(Mu, u)I S m, it suffices to show that 

(3.5) g(m2)m4 2m2 (2 sin2 - dab) - 4(d2ab - 4 ) < O. 

The parabola 

g(z) = z2 - 2z (2 sin2 - d2ab) - 4 (d2ab - 

has two real roots of opposite signs since 0 S a S 2, 0 S b S 2, and d2 S 1. Hence, 

(3.5) holds if and only if 

(3.6) m2 < 2 sin2 ?2l - d2ab sin4 2 + d2ab cos2 ? 
2 2 

Using the Schwarz inequality in (3.4), we get 

m2 2d2sin2 ??? ?2e2 sin2?T . 

Hence, (3.6) will follow from 

2d2 sin2 t 2 7 + 2e2 sin2 t + 27 
22 

(3.7)2 t + 2 -d2ab + 2sin4 + + d2ab cos2 + . < 2 sin ~2 ~ Nsn 2 2 

Setting X = cos (Q - ,q)/2, Y = cos (Q + iq)/2 in (3.7), we see that all we have to 

show is that 

2d2(1 - X2) + 2e2(1 - y2) 

(3.8) _ 

<2(l -Y2)-d2(X-y)2 + 2./(l - 2)2 +d2 2(X-y2 

in the unit square IXI < 1, IYI S 1. Condition (3.1) implies d2 + e2 < 1, hence, 
adding 2d2(l - Y2) to both sides of (3.8), we see that it suffices to show that 
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(3.9) d2(Y - X)(3Y + X) 2 - 2)2d2 Y2(X - y)2 

in the unit square. 
The left-hand side of (3.9) is nonpositive in the double sector (Y - X)(3 Y - X) 

< 0. Outside this double sector, we square both sides of (3.9) and have to show that 

(3.10) d4 (Y - X)2 (3 Y + X)2 < 4(1 - y2)2 + 4d2 (y - X)2 y2 

for X, Y in the unit square, satisfying (Y - X)(3Y + X) > 0. On the lines Y = OX, 
a > 1 or a < -(1/3), X between 0 and 1/lc, we have to show 

(3.1 1) d2X2(I - aC)2(d + ac(3d - 2))(d + ac(3d + 2)) < 4d2X2Ca2(1 - aZ2X2)2. 

Now, since d < 1/2, we have 
d 1 d 

a >1I or a<- 
2 - 3d 3 3d +2 

hence the left-hand side of (3.11) is not positive. This completes the proof of Theorem 
3. 

Similarly, we can prove 
THEOREM 4. The operator L is stable if 

(3.12) IIA/,U - B/v 12 + IIA/Ui + B/v112 < 1 and IIA/,U + B/v 12 < 1/4. 

The stability criteria (3.1) and (3.12) for L+ and L-, respectively, can be used 
as follows. The time step h is determined by (3.1) and (3.12) for L+ and L-, respec- 
tively, therefore, we can use L+ or at each step according to which criterion gives 
a larger time step. 

Remark. The proof of Theorem 3 is based on a theorem of Lax-Wendroff [5] 
which shows that l(Cu, u)I < 1 implies stability in L2. This theorem has been used, as 
far as we know, only by Lax and Wendroff in [5]. 

4. Stystems of Conservation Laws and Numerical Results. Consider the system 

(4.1) u. = (f(u)), + (g(u))y = Au. + Buy, 

where A = Vf, B = Vg, and f and g are nonlinear vector-valued functions of the vector 
u. We assume A and B can be symmetrized by the same similarity transformation; this 
guarantees that (4.1) is hyperpolic (cf. Lax-Wendroff [5]). 

We adapt L+ to (4.1) by setting 

(4.2) SS+u = u + DXM-+ f + DyMx+g + 2DX(PxA)Dxf + 1/2DY(PYB)Dyg 

+ 1AD (PxA)DyN+g + /lDY(PYB)DxN+f, 

where 

Px = (TX/2?+ T12)/25, Py = (Ty/2 + Tj A/)/2. 

It can be easily checked that (4.2) is a seven-point difference operator of second- 
order accuracy for (4.1). The amplification matrix associated with the linearized form 
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of (4.2) is given by (3.2). This indicates that 

(4.3) u(t + h) = S+u 

is stable. 
A similar result holds for S-. 
Finally, we note that (4.3) is suitable for problems with corners at the boundary. 

It does not use extrapolation at the corners of the boundary, unlike the nine- or more- 
point schemes. We give a numerical illustration for this fact, by comparing the Lax- 
Wendroff nine-point scheme with ours. Let D = {(x, y)lx < 0} U {(x, y)lx * y < 0}, 
and consider the initial boundary value problem 

u +UU? +UUy =0 (x, y) E D, t > 0, 

(4.4) U(0,X, Y) = -1 (x, y) ED, 

u(t, x, 0) = -1, x > 0, t > 0, 

u(t, 0,y)=-1 -t, y >0, t>0. 

The exact solution, which is constant along characteristic lines, is given by 

-1, x>y, y<0,. 

(4.5) u(t, x, 1, 
t)-x,x<y, 

-1-t - +/( + ) x 
2 t >-x, x <y. 

Note that the initial function is smooth, but the boundary function is discontinuous 
along (0, 0, t). We use 

(4.6) v(t + k) = S-v 

to approximate the solution. The seven-point scheme (4.6) computes the solution at 
the point of discontinuity (0, 0, t) without resorting to extrapolation unlike nine-point 
schemes. This enables us to compute the solution at positive times without any further 

complications. Let G = [- 1/2, 1/2]. We computed v in the domain (G x G) n D for 
0 < t < ?. We used the exact solution (4.5) for additional boundary conditions. The 
grid size was h = 1/80 and the time t = 0.5 was achieved in 202 time steps. The max- 
imal error I v - u I was of order 10-2 and was attained near the lines of discontinuity 
of u and Vu. We noted that the error decayed in time at all fixed points but one in 
the domain. Away from the lines of discontinuity, the error was of order 10- 5 and 
smaller. The Lax-Wendroff scheme in comparison gave, at the same points, errors of 
orders 10-1 and 10- 1, respectively. In both schemes, we used the same number of 
time steps. Near the lines of discontinuity, the error in the Lax-Wendroff scheme 
spread with time while in our scheme it contracted with time around the same lines. 

Acknowledgement. Thanks are due to S. Finklestein for her help in programming 
and running our S- scheme. 
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